Math 1089

https://math1089.in/

https://m.facebook.com/MATH1089.9801/

Twitter

https://twitter.com/Math1089 9801

2016

WB Class 11 Board Paper

MATHEMATICS

Time allowed: 3 Hours 15 Minutes
Maximum Marks: $\mathbf{8 0}$

General Instructions:

(i) This question paper comprises four groups $-\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}.
(ii) There are 4 questions in the question paper. All questions are compulsory.
(iii) There is no overall choice in the question paper. However, an internal choice has been provided. You have to attempt only one of the choices in such questions.
(iv) Group A - Each questions of one mark each; Group B - Each questions of two marks each; Group C - Each questions of four marks each; Group D-Each questions of five marks each.
(v) Use of calculators is not permitted.
(vi) Figures in the margin indicate full marks for the questions.

GROUP - A

All questions are compulsory.

1. Choose the correct alternative:

(i) If $f(x)=\log _{3} x$ and $\phi(x)=x^{2}$, then the value of $f\{\phi(3)\}$ will be
(A) 0
(B) 1
(C) 2
(D) 3
(ii) If $\tan \theta=-\frac{4}{3}$, then the value of $\sin \theta$ is
(A) $\frac{2}{5}$
(B) $\frac{4}{5}$ or $-\frac{4}{5}$
(C) $\frac{4}{5}$ but $\neq-\frac{4}{5}$
(D) $-\frac{4}{5}$ but $\neq \frac{4}{5}$
(iii) If the ratio of the sum of first three terms to the sum of next three terms of a geometric series be 125:27, then the common ratio of the series be
(A) $\frac{5}{3}$
(B) $\frac{1}{4}$
(C) $\frac{3}{5}$
(D) $\frac{1}{2}$
(iv) If the point $(\lambda, 1+\lambda)$ is lying inside the circle $x^{2}+y^{2}=1$, then
(A) $\lambda=-\frac{1}{2}$
(B) $\lambda<0$
(C) $-1<\lambda<0$
(D) $\lambda>0$
(v) The distance between the points $A(5,1,2)$) and $B(6,4,-1)$ is
(A) $\sqrt{35}$ units
(B) $\sqrt{53}$ units
(C) $\sqrt{5}$ units
(D) $\sqrt{3}$ units
(vi) If the points $A(2, \beta, 3), B(\alpha,-5,1)$ and $C(-1,11,9)$ are collinear, then
(A) $\alpha=3$
(B) $\beta=3$
(C) $\alpha=-1$
(D) $\beta=-1$
(vii) The value of $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 3 x}$ is
(A) 2
(B) 5
(C) $\frac{5}{3}$
(D) $\frac{3}{5}$
(viii) If $y=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$, then the value of $\frac{d y}{d x}$ will be
(A) $\tan ^{2} x$
(B) $\sec ^{2} x$
(C) $\sec x$
(D) $\tan x$
(ix) For two mutually exclusive events A and B, if $P(A)=\frac{1}{2}$ and $P(A \cup B)=\frac{2}{3}$, then the value of $P(B)$ will be
(A) $\frac{1}{4}$
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{5}$
(x) If $i^{2}=-1$, then the value of modulus of $(3 i-1)^{2}$ will be
(A) 9
(B) 10
(C) 8
(D) 6

GROUP - B

2. (a) Answer any two questions:
(i) Find the domain for which the functions $f(x)=3 x^{2}-2 x$ and $g(x)=9 x-6$ are equal.
(ii) If $f(x)=e^{p x+q}$, then show that

$$
f(a) \cdot f(b) \cdot f(c)=f(a+b+c) \cdot e^{2 q}
$$

(iii) If $13 \theta=\pi$, then show that

$$
\cos 3 \theta+\cos 5 \theta+2 \cos \theta \cdot \cos 9 \theta=0
$$

(iv) Prove that $\sec \alpha-\tan \alpha=\cot \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)$.
(b) Answer any two questions:
(i) Find the square root of the complex number (7-24i).
(ii) Find the $(r+1)$ th term from the end in the expansion of $(1-3 x)^{n}$.
(iii) If $n \in \mathbb{N}$, then prove by mathematical induction that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

(iv) If the sum of first $n, 2 n$ and $3 n$ terms of an arithmetic progression be S_{1}, S_{2} and S_{3} respectively, then prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.
(c) Answer any one question:
(i) Find the locus of the mid-point of the portion of the line $x \cos \alpha+y \sin \alpha=4$ intercepted between the axes of coordinates.
(ii) If the coordinates of a point lies on the ellipse $9 x^{2}+$ $16 y^{2}=144$ be $\left(2, \frac{3 \sqrt{3}}{2}\right)$, find the eccentric angle of that point.
(d) Answer any one question:
(i) If $y=\frac{e^{x}}{1+x^{2}}$, determine $\frac{d y}{d x}$.
(ii) Evaluate $\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\tan x}{x-\frac{\pi}{4}}$.
(e) Answer any one question:
(i) Find the probability of obtaining total 7 points with the rolling of two dice simultaneously.
(ii) Two variables x and y are related by $y=10-3 x$. If the standard deviation of x be 4, find the standard deviation of y.

GROUP - C

3. (a) Answer any two questions:
(i) For any three sets A, B and C

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

(ii) Find the value of $16 \cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15}$.
(iii) Show that

$$
\sin ^{3} \alpha+\sin ^{3}\left(120^{\circ}+\alpha\right)+\sin ^{3}\left(240^{\circ}+\alpha\right)=-\frac{3}{4} \sin 3 \alpha
$$

(b) Answer any two questions:
(i) Prove by mathematical induction (where $n \in \mathbb{N}$):

$$
\frac{1}{3 \cdot 6}+\frac{1}{6 \cdot 9}+\frac{1}{9 \cdot 12}+\cdots+\frac{1}{3 n(3 n+3)}=\frac{n}{9(n+1)} .
$$

(ii) If the p th and q th terms of an A.P are a and b respectively, then show that the sum of first $(p+q)$ terms of that A.P is $\frac{1}{2}(p+q)\left(a+b+\frac{a-b}{p-q}\right)$.
(iii) Find the probability of drawing 4 cards from a pack of 52 cards such that at least two cards will be aces.
(iv) Find the sum to n terms of the following series:

$$
\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\left(x^{4}+\frac{1}{x^{4}}\right)^{2}+\cdots
$$

(c) Answer any two questions:
(i) Two sides of a square have the equations $5 x+12 y=10$ and $5 x+12 y+29=0$ and the third side passes through the point $(3,5)$. Find the equations of the other two sides of the square.
(ii) Find the equation of the circle passes through the points $(4,3)$ and $(-2,5)$ and whose centre lies on the line $2 x-3 y=4$.
(iii) Show that the area of the triangle formed by the straight lines $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{1}{2}$. $\frac{\left(c_{1}-c_{2}\right)^{2}}{\left|m_{1}-m_{2}\right|}$ sq. units.
(iv) Find the value of $\cos B$ for the triangle formed by joining the points $A(6,11,2), B(1,-1,2)$ and $C(1,2,6)$.
(d) Answer any one question:
(i) Evaluate $\lim _{x \rightarrow 0} \frac{\cot 2 x-\operatorname{cosec} 2 x}{x}$.
(ii) Find from the first principle, the derivative of $f(x)=e^{x^{2}}$ at $x=1$.
(e) Answer any one question:
(i) Check the validity of the following statement by using the method of contradiction:
"The sum of a real number and a complex number is a complex number."
(ii) Check the validity of the following compound propositions:
(x) "72 is a multiple of both 4 and $9 . "$
(y) " 120 is a multiple of both 15 and 9."
(f) Answer any one question:
(i) Find the probability that a leap year, selected at random will contain 53 Sundays.
(ii) Find the coefficient of variation of the following data:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	4	10	16	12	8

GROUP - D

4.

(a) Answer any one question:
(i) Find the general solutions of x and y satisfying the equations $5 \sin x \cos y=1$ and $4 \tan x=\tan y$.
(ii) Find the domain of definition and range of the function f defined by $f(x)=\frac{x}{1+x^{2}}$.
(iii) If $f(x)=a x^{2}+b x+c$ and $f(2)=1, f(3)=6, f(-1)=10$, then find the value of $f^{\prime}(1)$.
(b) Answer any two questions:
(i) If $z=x+i y$ and $|z-1|+|z+1|=4$, then show that $3 x^{2}+4 y^{2}=12$, where $i=\sqrt{-1}$.
(ii) In how many ways can 6 boys and 4 girls be seated in a round table so that two girls never be seated together?
(iii) If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P, then prove that

$$
\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\frac{1}{a_{3} a_{4}}+\cdots+\frac{1}{a_{n-1} a_{n}}=\frac{n-1}{a_{1} a_{n}} .
$$

(iv) Solve $\frac{|x|-2}{|x|-3} \geq 0$, where $x \in \mathbb{R}$ and $x \neq \pm 3$.
(c) Answer any one question:
(i) If the extremities of a focal chord of the parabola $y^{2}=$ $4 a x$ be $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$, prove that $t_{1} t_{2}=-1$.
(ii) If S, S^{\prime} are the foci and P be any point on the hyperbola $x^{2}-y^{2}=a^{2}$, prove that $S P \cdot S^{\prime} P=C P^{2}$ where C is the centre of the hyperbola.

[^0]
[^0]: \# West Bengal Board 2016 mathematics Paper \# Annual Examination

