**44**. The number of lines of symmetry in a isosceles triangle is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**43**. The number of lines of symmetry in an equilateral triangle is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**42**. The number of lines of symmetry in a scalene triangle is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**41**. If an isosceles triangle has more than one line of symmetry, then it must be

- (A) An equilateral triangle
- (B) A scalene triangle
- (C) A right-angled triangle
- (D) None of these

**40**. The number of lines of symmetry in a square is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**39**. The number of lines of symmetry in a rectangle is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**38**. A rhombus is symmetrical about its

- (A) Sides
- (B) Diagonals
- (C) Vertices
- (D) Point of intersection of diagonals

**37**. The number of lines of symmetry in a kite is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**36**. If a rectangle has more than two lines of symmetry, then it must

- (A) Quadrilateral
- (B) Rhombus
- (C) Square
- (D) Kite

**35**. The number of lines of symmetry in a regular hexagon is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**34**. The number of lines of symmetry in a circle is

- (A) 0
- (B) 2
- (C) 4
- (D) More than 4

**33**. The number of lines of symmetry in a regular polygon of *n* sides is

- (A)
*n*– 1 - (B)
*n*+ 1 - (C)
*n*/2 - (D)
*n*

**32**. The number of lines of symmetry in a ruler is

- (A) 0
- (B) 1
- (C) 2
- (D) 4

**31**. The number of lines of symmetry in a divider is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

**30**. The number of lines of symmetry in compasses is

- (A) 0
- (B) 1
- (C) 2
- (D) 3