Symmetry

44. The number of lines of symmetry in a isosceles triangle is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

43. The number of lines of symmetry in an equilateral triangle is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

42. The number of lines of symmetry in a scalene triangle is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

41. If an isosceles triangle has more than one line of symmetry, then it must be

  • (A) An equilateral triangle
  • (B) A scalene triangle
  • (C) A right-angled triangle
  • (D) None of these

40. The number of lines of symmetry in a square is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

39. The number of lines of symmetry in a rectangle is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

38. A rhombus is symmetrical about its

  • (A) Sides
  • (B) Diagonals
  • (C) Vertices
  • (D) Point of intersection of diagonals

37. The number of lines of symmetry in a kite is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

36. If a rectangle has more than two lines of symmetry, then it must

  • (A) Quadrilateral
  • (B) Rhombus
  • (C) Square
  • (D) Kite

35. The number of lines of symmetry in a regular hexagon is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

34. The number of lines of symmetry in a circle is

  • (A) 0
  • (B) 2
  • (C) 4
  • (D) More than 4

33. The number of lines of symmetry in a regular polygon of n sides is

  • (A) n – 1
  • (B) n + 1
  • (C) n/2
  • (D) n

32. The number of lines of symmetry in a ruler is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 4

31. The number of lines of symmetry in a divider is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

30. The number of lines of symmetry in compasses is

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) 3

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: