*Mathematics is not a book confined within a cover and bound between brazen clasps, whose contents it needs only patience to ransack; it is not a mine, whose treasures may take long to reduce into possession, but which fill only a limited number of veins and lodes; it is not a soil, whose fertility can be exhausted by the yield of successive harvests; it is not a continent or an ocean, whose area can be mapped out and its contour defined: it is limitless as that space which it finds too narrow for its aspirations; its possibilities are as infinite as the worlds which are forever crowding in and multiplying upon the astronomer’s gaze. *

** J. Sylvester**

Glad you came by. I wanted to let you know I appreciate your spending time here at the blog very much. I do appreciate your taking time out of your busy schedule to check out **Math1089**!

In mathematics, whole numbers are the part of the number system that includes all the positive integers starting from 0. In set theoretic notation, the set of whole numbers is **W** = {0, 1, 2, 3, 4, . . .}.

On other hand, among many mathematical operations, addition (+), subtraction (−), multiplication (×), division (÷), reciprocal (1/*x*), exponentiation (*a ^{x}*), square root (√), concatenation (

*xx*), factorial (!) etc. are well known. Of course, we should not forget fraction (

*a*/

*b*) and decimal (

**.**).

There is a famous mathematics problem in which we are allowed to use only 4 fours and any mathematical operations to generate various whole numbers. In this article, we will show the way to generate whole numbers up to 20 using 4 fours. But we can generate other numbers also. Here, we have considered a few ways to represent a particular number, so the list is not exhaustive. If you came across any other way(s) to represent a number, not listed here, please do get back to us.

First we will generate the whole numbers 0, 1 and 2. The list is given below.

Next, we will generate 3, 4, 5 and 6. The list is given below.

Once done with numbers up to 6, now we will consider numbers 7, 8, 9 and 10. A list is given below.

Once done with numbers up to 10, now we will consider numbers 11, 12, 13 and 14. A list is given below.

Next, the turn for the numbers 15, 16 and 17. A list is given below.

Finally, the turn for the numbers 18, 19 and 20. A list is given below.

Of course, we can include other whole numbers in this list. A second blog containing the numbers from 21 to 50 will appear very soon as a continuation to this one.

Your suggestions are eagerly and respectfully welcome! See you soon with a new mathematics blog that you and I call **“****Math1089 – Mathematics for All!**“.

Good description.. sir… wait for the next part…thank you

LikeLiked by 1 person