 # Algebraic Expressions and Identities

67. a(b + c) = ab + ac is

• (A) commutative property
• (B) distributive property
• (C) associative property
• (D) closure property

66. (a + b)c = ac + bc is

• (A) commutative property
• (B) distributive property
• (C) associative property
• (D) closure property

65. The product of a monomial and a binomial is a

• (A) monomial
• (B) binomial
• (C) trinomial
• (D) none of these

64. In a polynomial, the exponents of the variables are always

• (A) integers
• (B) positive integers
• (C) non-negative integers
• (D) non-positive integers

63. The product of two polynomials is a

• (A) monomial
• (B) binomial
• (C) trinomial
• (D) polynomial

62. Which is the like term as 24a2bc?

• (A) 13 × 8a × 2b × c × a
• (B) 8 × 3 × a × b × c
• (C) 3 × 8 × a × b × c × c
• (D) 3 × 8 × a × b × b × c

61. Which of the following is an identity?

• (A) (p + q)2 = p2 + q2
• (B) p2q2 = (pq) 2
• (C) p2q2 = p2 + 2pqq2
• (D) (p + q)2 = p2 + 2pq + q2

60. Which of the following is correct?

• (A) (ab)2 = a2 + 2abb2
• (B) (ab)2 = a2 – 2ab + b2
• (C) (ab)2 = a2b2
• (D) (a + b)2 = a2 + 2abb2

59. If (x + a)(x + b) = x2 + (a + b)x + p, then p is equal to

• (A) (a + b)x
• (B) bx
• (C) ab
• (D) ax

58. If (xa)(x + b) = x2 – (ab)x + p, then p is equal to

• (A) a + b
• (B) ab
• (C) –ab
• (D) ab

57. If (x + a)(xb) = x2 + pxab, then p is equal to

• (A) a + b
• (B) ab
• (C) –ab
• (D) ab

56. If (xa)(xb) = x2 + px + ab, then p is equal to

• (A) (a + b)
• (B) – (a + b
• (C) ab
• (D) –ab

55. Like term as 4m3n2 is

• (A) 4m2n2
• (B) –6m3n2
• (C) 6pm3n2
• (D) 4m3n

54. Coefficient of y in the term –y/3 is

• (A) – 1
• (B) – 3
• (C) −1/3
• (D) 1/3

53. The coefficient of the term –6x2y2 is

• (A) 6
• (B) –6
• (C) –6x2
• (D) –6y2

52. The numerical coefficient in –37abc is

• (A) 37
• (B) –37
• (C) –37a
• (D) –37bc

1. Shailendra Mishra says:

Excellent

1. Math1089 says:

Thank You Sir!

2. DHIRENDRA says:

THANKYOU

1. Math1089 says:

Welcome

3. DEB JYOTI MITRA says:

Simple Identities & Expressions In ALGEBRA Presented Decently

1. Math1089 says:

Thank you sir