# Exciting MCQ’s

1. The number of digits in 416 525 is

• (A) 31
• (B) 30
• (C) 29
• (D) 28
• (E) 27

2. The number 2564 ∙ 6425 is the square of a positive integer N. In decimal representation, the sum of the digits of N is

• (A) 7
• (B) 14
• (C) 21
• (D) 28
• (E) 35

3. What is the sum of the digits of the decimal form of the product 21999 ∙ 52001?

• (A) 2
• (B) 4
• (C) 5
• (D) 7
• (E) 10

4. The value of (256)0.16(256)0.09 is

• (A) 4
• (B) 16
• (C) 64
• (D) 256.25
• (E) –16

5. Let w, x, y, and z, be whole numbers. If 2w ∙ 3x ∙ 5y ∙ 7z = 588 then what does 2w + 3x + 5y + 7z equal?

• (A) 21
• (B)25
• (C) 27
• (D) 35
• (E) 56

6. If x and y are positive integers for which 2x3y = 1296, what is the value of x + y?

• (A) 8
• (B) 9
• (C) 10
• (D) 11
• (E) 12

7. An integer x is chosen so that 3x + 1 is an even integer. Which of the following must be an odd integer?

• (A) x + 3
• (B) 2x
• (C) x ⎼ 3
• (D) 7x + 4
• (E) 5x + 3

8. A three-digit number XYZ is formed of three different non-zero digits X, Y and Z. A new number is formed by rearranging the same three digits. What is the greatest possible difference between the two numbers? (For example, 345 could be rearranged into 435, for a difference of 435 – 345 = 90.)

• (A) 792
• (B) 293
• (C) 564
• (D) 984
• (E) 297

9. How many three-digit positive integers, with digits x, y and z in the hundred’s, ten’s and unit’s place respectively exist such that x < y, z < y, xy, and x ≠ 0?

• (A) 245
• (B) 285
• (C) 240
• (D) 320
• (D) 328

10. Avirupa gives half of her 24 pages to a friend. How many pages does she give away?

• (A) 2
• (B) 4
• (C) 6
• (D) 12
• (E) 48